characters AFKP using the public and private
keys you derived in Exercise 13.25. Remember
the limitation imposed by the choice of prime
numbers.

Section 13.5
13.27 With the aid of a diagram, show how nonre-

pudiation can be obtained using the RSA
algorithm:

{t) onthe complete message,

(ti) on a digest of the message.

Clearly identify on your diagram the keys
used and the encrypted/decrypted values at
each stage.

Section 13.6
13.28 With the aid of a diagram, explain how user

authentication can be carried out using a
public key scheme. Include in your diagram

13.29

13.50

895

Exercises

the contents of each message and the key
used to encrypt the message.

Explain the meaning and use of the following
terms in relation to the authentication proce-
dure associated with Kerberos:

(i) tickets,

(ii} ticket granting server,

(iii) nonce,

(iv) authentication server,

(v) authentication database,

(vi) authenticator.

With the aid of a diagram, identify a possible
security threat that can occur with a public
key system when the public key is made read-
ily available. Describe how a certification
authority can be used to overcome this
threat. Include in your description a list of
the fields that are present in the certificate
and their use.

Internet applications

14.1

Introduction

As we showed in Figure 12.1 and explained in the accompanying text, in the
TCP/1P protocol suite, given the IP address and port number of a destination
application protocol/process (AP), the services provided by TCP or UDP
enable two (or more) peer APs to communicate with each other in a transpar-
ent way. That is, it does not matter whether the correspondent AP(s) is{are)
running in the same computer, another computer on the same network, or
another computer attached 10 a nerwork on the other side of the world. Also,
since neither TCP nor UDP examines the content of the information being
transferred, this can be a control message (PDU) associated with the applica-
tion protocol, a file of characters from a selected character set, or a string of
bytes output by a particular audio or video codec. Hence application protocols
are concerned only with, firstly, ensuring the PDUs associated with the proto-
col are in the defined format and are exchanged in the specified sequence
and secondly, the information/data being transferred is in an agreed transfer
syntax so that it has the same meaning to each of the applications.

In this chapter, we discuss both the role and operation of a selection of
the application protocols associated with the Internet. These are the simple

14.2

14.2.1

14.2 Domain name system 897

{electronic) mail transfer protocol (SM1P) and the related multipurpose
Internet mail extensions (MIME) protocol, the file transfer protocol (FTF)
and a simpler version of this (Trivial FTP), and Internet telephony. In addi-
tion, we describe two protocols which, in many instances, a user of the
Internet is unaware of. The first is invoked every time we use the Internet and
is called the Domain Name System (DNS). The second is concerned with the
management of the various networking devices that make up the Internet
and is called the simple network management protocol (SNMP). Because of
its role, we shall describe the DNS protocol first.

Domain name system

As we saw in Figure 12.1 and its accompanying text, an application proto-
col/process (AP} communicates with a correspondent AP using the latter’s IP
address and port number. The IP address of the destination AP is first used to
route a message — contained within one or more datagrams — across the
Internet to the required host and the port number is then used within the
host protocol stack to route the received message to the required destination
AP. As we saw, however, in the TCP/IP protocol suite the port number of a
server AP is allocated a well-known port number which is known by all the
client APs that communicate with it. Hence in order to communicate with a
remote AP, the source AP need only know the IP address of the host in which
the AP is running. Nevertheless, even if this is represented in dotted decimal,
it can require up to 12 decimal digits to be remembered, with many more for
an IPv6 address. To avoid users from having to cope with such numbers, a
directory service similar to that used with a PSTN is used. This is called the
Domain Name System (DNS) and it enables each host computer attached to
the Internet to be allocated a symbelic name in addition to an IP address.

There are many millions of hosts attached to the Internet each of which
has a unique IP address assigned to it. Each host, therefore, must also have a
unique name assigned to it and hence an efficient naming scheme is a major
part of the DNS. In addition, given a symbolic name, this must be mapped
into the related IP address before any communication can take place. This
procedure is called name-to-address mapping and is part of the DNS. As we
indicated in the introduction, this must be done every time a network appli-
cation is run and hence it is essential that the procedure is carried out in an
efficient way. We shall limit our discussion of the DNS to these two compo-
nents. They are defined in RFCs 1034 and 1035.

Name structure and administration

All the data in the DNS constitutes what is called the domain name space and
its contents are indexed by a name. The structure of the name space is impor-
tant since it strongly influences the efficiency of both the administration of

Chapter 14 Internet applications

the name space and the subsequent address resolution operation. Basically
there are two approaches. One is to adopt a flat structure and the other a
hierarchical structure. Although a flat structure uses the overall name space
more efficiently, the resulting DNS must be administered centrally. Also,
since in a large network like the Internet multiple copies of the DNS are
required to speed up the name-to-address mapping operation, using a flat
structure would mean that all copies of the DNS would need to be updated
each time a change occurred. For these reasons, the domain name space uses
a hierarchical naming structure.

In terms of the administration of the name space, the advantages of using
a hierarchical structure can best be seen by considering the structure and
assignment of subscriber numbers in the telephone system. At the highest
level there is a country code, followed by an area code within that country,
and so on. The assignment of numbers can be administered in a distributed
rather than a centralized way. The assignment of country codes is adminis-
tered at an international level, the assignment of area codes within each
country at a national level, and se on, down to the point where the assign-
ment of numbers within a local area can be administered within that area.
This can be done knowing that as long as each higher-level number is unique
within the corresponding level in the address hierarchy, the combined
number will be unique within the total address space.

The adoption of a hierarchical structure also means that it is possible to
partition the DNS in such a way that most name-to-address mapping opera-
tions — and other services — can be carried out locally, For example, if names
are assigned according to the geographical location of hosts, then the name
space can be partitioned in a similar way. Since most network transactions,
and hence requests, are between hosts situated in the same local area — for
example, between a community of workstations and a local server or email
system — then the majority of service requests can be resolved locally and reia-
tively few referred to another site.

As we show in Figure 14.1, the overall structure of the domain name
space is represented in the form of an inverted tree with the single root at the
top. The root is called the root domain and the top-level branch nodes in the
tree, domain nodes or simply domains. Each domain has further branches
associated with it until, at the lowest level of the tree, is a single host that is
attached to the Internet. The names of the top-level domains reflect the his-
torical development of the Internet. Initially, when the Internet spanned just
the United States with a small number of international organizations linked
to it, at the top level was a set of what are called generic domains each of
which identified a particular organization to which the owner of the host
belonged. These are:

con: this identifies hosts that belong to a commercial organization,
edu: an educational establishment,

gov: the US federal government,

14.2 Domain name system | 899

A

Generic domains ‘:}-‘. Couniry domains

Root demain

I

loprevel_ | | ll | _l | l | I |
com edu gov il org net int au ie my uk us - — - Zw
m ﬂ"l ™M |-l-| Fhormm rrrrmrmrmrm rm
newbridge mit ieee edu ul com ac uz
m N rrormom
comsoc monash unilele swansea
m m rnm
WWW csse EE
m m
koala orion

Figure 14.1 The structure of the domain name system together with some examples.

mil the US armed forces,
org: a non-profit organization,
net a network provider,

inf an international organization.

Later, as the Internet expanded its area of coverage, so a set of country
domains were introduced. There is now a separate country domain for each
country and these are defined in ISO 3166. For this reason, most hosts in the
United States are identified by means of a generic domain and those outside
of the US by their country domain. However, this is not always the case. Most
large multinational companies, for example, often use the com generic
domain. Also, since each domain is responsible for allocating the names of
the (sub)domains that are linked to it, then some countries use different
names from those used in the generic domain. For example, in the UK and a
number of other countries, the domain name for edu is ac — academic com-
munity — and that for com, co. Note also that all names are case-insensitive and
hence can be written in either upper-case or lower-case and still have the
same mearting.

As we indicated earlier, the allocaton of names is managed by the author-
ity responsible for the domain where the name is to appear. For example, if a
host located within the electrical engineering department of a new university
is to be attached to the Internet, then, assuming the country is outside of the

900

Chapter 14 Internet applications

14.2.2

US, first the university is assigned a name within the edu/ac domain of the
country by the appropriate national authority, then the name of the depart-
ment by an authority acting at a university level, and finally the name of the
host by an authority within the department. The name of the host is then
derived by listing the various domain names — each called a label - starting
with the host name back to the root. These are listed from left-to-right with
each label separated by a period (.) which is pronounced “dot”. In this way,
providing each label is unique within its own domain, then the resulting
name is unique within the context of the total domain name space of the
Internet. Note that the root has a null label and hence some examples are:

newbridge. com.
orion. EE, swansea. ac.uk.

unitele.com.my.

Note that since each name ends in a period, they are all examples of absolute
domain names which are also called fully qualified domain names (FQDN).
If the name does not end in a period, it is said to be incomplete or relative.

DNS resource records

Each domain name in the DNS name space may have information associated
with it. This is stored in one or more resource records, each of which is
indexed by the related domain name. A hast name, for example, has a
resource record that contains the IP address of the host. In practice there are
a number of different types of record each of which has the standard format
shown in Figure 14.2(a).

The domain name is the name of the domain to which the record relates.
It consists of the string of labels that make up the domain name and is in the
format shown in Figure 14.2(b). Each label is preceded by a 1-byte count that
indicates the number of characters/bytes in the label. A label can be up to 63
characters long and the full domain name must be less than 256 characters.
The final byte is always 0 which indicates the root.

The type field indicates the record type and a selection of these are listed
in Figure 14.2(c). A type-A record, for example contains an IPv4 address
which is stored in its 32-bit binary form. A type-NS record contains the name
of the name server for this domain and is stored in the same format as the
domain name. A type-PTR record contains an IP address stored in its dotted
decimal form. A type-HINFO record contains the type of host and its operat-
ing system both of which are stored as an ASCII string. An MX-record
contains the name of a host — an email gateway, for example, as we showed in
Figure 5.12 - that is prepared to accept email for forwarding on a non-
Internet (IP} site. There is also a type-AAAA record which contains an IPv6

‘address stored in its hexadecimal form. We shall discuss the use of some of

these records in the next section.

14.2 Domain name system 901

{o)
Bits —m 1 1617 32

!lll'llI|I?IIITIIITIIIIIIIIIIIIII

. Domain name .

Type I Class

Timetorlive

Resource dala length |

' Rescurce data .

{b)

Domain name = koala.csse.monash.edu.au,

B ey M E——
LT TP TR

Byte counts

c)

Type Value Meaning
A 1 IP address
NS 2 Name server
PTR 12 Pointer record
HINFO 13 Host information
MY 15 Mail exchange
{d)
1617 32
I_lllll|I[IIIY'IIPIIIIIII?IIYI'T1TT] =
i_ QGluery header q
3 i DNS quer
" Guery [domain| name 1 messoqe Y
4 r DNS response
Query type I Query class messoge
i: Resource record '_'i

Figure 14.2 DNS resource records and queries: (a) resource record
format; (b) domain name format; (c) a selection of resource record
types; (d) fquery and response message formats.

For Internet records the class field is always 1 and has the mnemonic IN.
The time-to-live field indicates the time in seconds the information contained
within the record is valid. As we shall see, this is required when the IP address
contained in the record has been cached. A typical value is 172 800 which is
the number of seconds in 2 days.

902

Chapter 14 Internet applications

14.2.3

14.2.4

The resource data length field specifies the length of the resource data field.
As we have just indicated, the format of the latter differs for different record
types and hence the number in the length field relates to the type of data pre-
sent. For example, if it is an IPv4 address then the length field is 4 to indicate
4 bytes.

DNS guery messages

The DNS database is queried using a similar list of (query) types to those
used to describe the list of different resource record types. Hence there is a
name-to-address resolution query — type A — and so on. A standard format is
used to represent each query and this is shown in Figure 14.2(d).

The query name field holds the domain name - and hence resource record
— to which the query relates. So for a name-to-address resolution query, for
example, this contains the domain name of the host and this has the same
format that we showed in Figure 14.2(b).

To initiate a query of the DNS - also called a question — a DNS query mes-
sage is formed by adding a standard 12-byte header to the particular query.
The DNS response message is then made up of the query message with one
or more resource records — also called answers — appended to it. The 12-byte
header contains a 16-bit identification field and a 16-bit flagy field. The value in -
the identification field is assigned by the client that sent the query. It is then
returned unchanged by the server in the response message and is used by-the
client to relate the response to a given query.

The flags field consists of a number of subfields. For example, a 1-bit field
is used to indicate whether the message is a query (=0) or a response (=1).
There is also a 4-bit field to indicate the type of search involved. As we shall
see, this can be standard, recursive, iterative, or inverse.

Name servers

As we indicated earlier, the adoption of a hierarchical structure also facilitates
the partitioning of the total DNS database so that most service requests —
name-tc-address mappings for example - can be carried out locally. To do
this, the total domain name space is partitioned intc a number of zones cach
of which embraces a unique portion of the total name space. Each zone is
then administered by a separate authority which is also responsible for pro-
viding one or more name servers for the zone. Depending on its position in
the hierarchy, a name server may have authority over a single zone or, if it is
higher up in the hierarchy, multiple zones.

Associated with each zone is a primary (name) server and possibly one or

-more secondary (name) servers. The allocation of names and addresses within

the zone is carried out through the primary server and it keeps this informa-
tion — and hence its portion of the total database ~ in a block of resource
records on hard disk. The resource records within its database are said there-

14.2.5

14.2 Domain name system | 903

fore to be authoritative records. The records held in a secondary server are
held in volatile storage and are cached versions of those held in a primary
server. As we shall see, caching occurs when a primary or secondary server, on
finding it does not have the resource record relating to a request, refers the
request to a higher-level server. Then, on receipt of the requested IP address,
the server that initiated the request retains a copy of this in its cache for a lim-
ited time period. The time is stored in the time-to-live field of the accessed
resource record and, as we indicated earlier, typically, it is set to 2 days.

Some examples of (fictitious) zones are shown in Figure 14.3. As we can
see, the top-level zones in the hierarchy have authority over multiple zones.
The zone boundaries in the lower levels are intended to reflect the level of
administrative overheads — and hence query requests — associated with
the zone.

Service requests

All the information that is stored in each primary name server is accessible to
both its secondary servers and also to any other primary server. Because of
the excessive overheads that would be involved, however, each primary name
server does not know how to contact — that is, does not have the IP address of
- every other primary name server. Instead, each primary server knows only
how to contact a set of top-level root name servers. There are only a small
number of these and their IP addresses are stored in the configuration file of
each primary server. In turn, each root server holds the name and IP address
of each of the second-level servers in the hierarchy and, on receipt of a
request from a primary server, the root server returns the name and IP
address of the second-level server that should be used. The primary then pro-
ceeds to query this server and so on down the hierarchy until a resource
record containing the required IP address is obtained. This procedure is

Root domain

Zone

Zones

Figure 14.3 Some examples of DNS zones.

904

Chapter 14 Internet applications

called a recursive name resolution. Alternatively, in order to reduce the
amount of processing done by each name server, an iterative approach can
be used. Before we describe each of these approaches, however, we shall
describe first how a simple name resolution is carried out using a name
server that is local to the host making the request.

Local name resolution

As we show in Figure 14.4, an AP running in a host that is attached to the
Internet obtains the IP address of a named host through a piece of software
called a resolver. Normally, this is a library procedure that is linked to the AP
when the AP is first written. The resolver is given the IP address of the local
name server — either a primary or a secondary server - that it should use to
carry out name-to-address resolutions. Note that the (well-known) port
number of a name server is 53.

As we shall see later, as part of ail applications - file transfers, email trans-
fers, and so on - the source (client) AP is given the name of the host in which
the required destination (server) AP is running. Then, prior to initiating the
networked application/transaction, the source AP invokes the resolver to
obtain the IP address of the given destination host name (1). In the figure it
is assumed that the resolver first sends a type-A query to its local name server
requesting the IP address of the (destination) host specified in the query
name field (2).

In this example it is assumed that the local name server has the resource
record containing the IP address and hence this is returned in a type-A

Local name server
Client host {primary or secondary) Server host

IP network

m = resolver invoked by client AP with the name of the server host

(4] = resolver sends a type-A query containing the name of the server host fo its local DNG
{3) = local DNS retums a typeA resource record confaining the P addresss of the server
{4} = resclver returns iP address of the server to the client AP

(51716} = client and server APs carry out networked opplication/fransaction

Figure 14.4 Example showing the sequence of messages exchanged for
a local name resolution.

14.2 Domain name system | 905

resource record (3). This is passed first to the resclver in the source — using
UDP - and the resolver then returns the IP address contained within the
record to the linked source AP (4). Once the source (client) AP has the IP
address of the destination (server} AP, the two can start to carry out the net-
worked application using TCP (5)/(6).

Recursive name resolution

When a local name server does not have a resource record relating to a given
destination host name, it carries out a search for it. A schematic diagram
showing the procedure followed using the recursive search method is given
in Figure 14.5.

As we indicated earlier, all primary name servers have the IP addresses of
the set of top-level root name servers. Hence as we can see, the local name
server first sends a recursive query message containing the name of the
required host — for example the newbridge.com. gateway ~ to one of the roo
name servers (1). From the name in the query message, the root server deter-
mines that the com name server should be queried and hence it returns the
IP address of this in the reply — called an answer — message (2). On receipt of
this, the local server sends a second query message to the com name server

iP network
CoT T
j] root
I : i2)
I
! l 1
I : {3)
! | com
i b
I
! | 11
| boo5)
: : newbridge
I Lol

(1} = lucal name server sends a recursive query message containing name of the destination
hist - for example, the newbridge.com. gateway - fo the root name server

12) = the root server returns the IP address of the com server

131 = local server sends a recursive query to com name server

(4] = the com server relurns the (P address of the newbridge.com server
(5] = local server sends a recursive query to newbridge.com server

{6) = the newbridge.com server sends IP address of newbridge.com. gateway (hosi]

Figure 14.5 Example showing the sequence of messages exchanged for
a recursive name resolution.

906

Chapter 14 Internet applications

using the returned IP address (3). In response, the com name server deter-
mines from the name in the query that the newbridge.com name server should
be queried and hence it returns the IP address of this in the reply (4).

On receipt of this, the local server sends a third query message to the
newbridge.com server (5) and, in the example, it is assumed that this has the
requested resource record. Hence it returns this - containing the IP address
of the destination host - to the local name server (6). The latter then relays
the answer to the resolver in the source host and this, in turn, returns the IP
address in the answer message to the source AP, The related client-server
application can then start.

Note that in this example it was assumed that the local server was a pri-
mary server. If it was a secondary server, however, then this would send the
first query to its (known) primary server and it is this that would initiate the
sequence shown. Also, in order to reduce the number of queries that take
place, each name server retains all resource records it receives — each con-
taining an IP address — in a cache. In many instances, therefore, the answer to
a query from a resolver is available in the cache so avoiding any external
queries being sent out.

Iterative name resolution

In order to avoid always going to a root server — and hence to the top of the
name tree — to initiate the search for an unknown resource record, with the iter-
ative search method the local server starts its search for the requested record
from the server that is nearest to it, Figure 14.6 illustrates the procedure.

To support the iterative method, instead of each primary name server
having the IP addresses of the set of top-level root servers, it has the name
and IP address of the next higher-level server to it in the naming hierarchy.
Then, when a resolver sends a query — this time called an iterative query mes-
sage — to its local server, if the local server does not have the requested
resource record, instead of sending a query to a root server, it sends an (itera-
tive) query to the next higherlevel name server in the hierarchy — the com
server in the example. If this has the record, it responds directly. If it hasn’t,
then it parses the name and returns a response containing the IP address of
the server that it thinks might have (or is nearest to) the requested record.
The local server then sends an (iterative) query to this server and so on undil
it receives a response message containing the requested record/IP address.
As we can deduce from the figure, the search only proceeds up the tree to the
level that is necessary to obtain the requested record thereby reducing the
load on the toplevel root servers.

Pointer queries

Although most queries of the DNS database relate to name-to-address transia-
tions, there are also querig¢s that require an address-to-name translation.
These are called pointer queries and, normally, they are from a system program
that carries out a diagnostic operation, for example. They are also used by
email servers and file servers to validate users.

14.2 Domain name system | 907

IP network
]
com
(2)
. l newbridge i
{3)
aft
4]
(3]
aff. www
o
may be cached in atf server 11
{1} = local name server sends an iterative query message containing the name of the

destination host — aft, www ~ to the next higherlevel server - com

(2} = the com server replies with the IP address of the ait server

13) = local server sends an iterative guery to the aff server

[4) = the att server relums the IP address of the aff.www server

151 = locol server sends an iterafive query to the aff.www server

{6] = the all.www server returns the IP address of the requested VWeb host

Figure 14.6 Example showing the sequence of messages exchanged for an iterative name
resolution.

To support this type of query, the resolver, given the IP address of a host,
must initiate a search of the DNS and return the host name. As we indicated
earlier, however, the search key of the DNS is a domain name. This means
that with the database structure we showed in Figure 14.3, this type of query
would require a complete search of the database starting with the set of top-
level domain names. Clearly this is impractical and hence to support pointer
queries an additional branch in the DNS name space to those shown in
Figure 14.1 is present. This is shown in Figure 14.7.

As we can see, it starts with the top-level domain name arpa, followed by
the second-level name in-addr. This is then followed by the four bytes (in
dotted-decimal) that make up the IP address of each host whose name is in
the DNS name space starting with the address-type byte. This order is used
since the netid part of the address is assigned by arpa.in-addr and the hostid
part by the authority that has been allocated the netid. Hence to be consis-
tent with the other types of query message, the “domain name in the
pointer-type query message for the IP address 132.1 13.56.25 is:

95.56.11%.132.in-addr.arpa

908

Chapter 14 Internet applications

14.3

Root
Toprlevel
domain names > l l ______ l

arpa com ZwW

inraddr
I I - —% - - - Netid
01 132 255
o1 113 255 P address

": \: =132.113.56725

01 s6 255 |

resource record =

IP address specified in domain name of query message as 25.56.113.132. in-addrarpa.
Host name in reply message assumed fo be www.abc.com.

Figure 14.7 Pointer query principles.

that is, it starts with the last byte of the IP address first. The search of this por-
tion of the database then yields a resource record as before but this time it
contains the domain name of the host that has the given IP address. Hence in
the example shown in the figure, this is assumed to be www.abe.com. Because
of the reverse order of the labels in the domain name, a pointer query is also
known as an inverse query.

Electronic mail

Fram a user perspective, electronic mail (email) — apart from Web surfing
which we describe in the next chapter — is probably the most popular applica-
tion on the Internet. We identified the standards relating to email over the
Internet in Section 5.3.3 and, as we showed in Figure 5.10, an email system
comprises two main components: an email client and an email server.
Normally, an email client is a desktop PC or worksiation which runs a pro-
gram called the user agent (UA). This provides the user interface to the

14.3.1

14.3 Electronic mall | 909

email system and provides facilities to create, send, and receive (email} mes-
sages. To do this, the UA maintains an IN and an OUT mailbox and a list of
selections to enable the user to create, send, read, and reply to a message, as
well as selections to manipulate the individual messages in the two mailboxes,
such as forward and delete.

The email server is a server computer that maintains an IN mailbox for
all the users/clients that are registered with it. In addition, the server has soft-
ware called the UA server to interact with the UA software in each client and
also software to manage the transfer of mail messages over the Internet. The
software associated with the latter function is called the message transfer
agent (MTA) and is concerned with the sending and receiving of mail
messages to/from other email servers that are also connected directly o
the Internet.

The protocol stack that is used to support email over the Internet was
shown earlier in Figure 5.11. Normally, the protocol stack associated with the
access network — the internet service provider (ISP) network and the
site/campus LAN shown in the figure — is either the PPP protocol we
described in Section 9.9 — used with an ISP network - or, with a PC network, a
protocol stack such as Novell NetWare. A number of different vendors then
provide proprietary software to carry out the various interaction functions
between the user and the UA client. In addition, there are a number of proto-
cols that can be used to control the transfer of messages over the access
network, For example, the POP3 protocol — post office protocol 3 - is often
used to fetch messages from the user’s IN mailbox in the server to the IN
mailbox maintained by the UA. Essentially, POP3 defines the format of the
various control messages that are exchanged between the UA client and UA
server to carry out a transfer and also the sequence of the messages that are
exchanged. POP3 is specified in RFC 1939.

The application protocol that is used to control the transfer of messages
between two MTAs over the Internet is called the simple mail transfer proto-
col (SMTP). 1t is specified in RFC 821. In this section we first describe the
structure of mail messages and the use of the various fields in each message
header. We then present an overview of how a typical message transfer is car-
ried out and finally, the operation of SMTP.

Structure of email messages

When we send a letter using a postal service, we first write our own name and
address at the head of the letter followed by the message we wish to send.
Typically, this comprises the name and address of the intended recipient fol-
lowed by the actual letter/message content. We then insert the letter into an
envelope and write the name and address of the intended recipient on the
front of the envelope. Also, to allow for the possibility of the recipient having
changed address, we often write our own name and address on, say, the back
of the envelope. We then deposit the envelope into a mailbox provided by

910

Chapter 14 Internet applications

the postal service. The latter then uses the name and address on the front of
the envelope to forward and deliver it to the address of the intended recipi-
ent. Alternatively, if this is not possible, it uses the address on the back of the
envelope to return it to the sender. The recipient knows who sent the letter
by the name and address at the head of the letter.

Thus there are two distinct procedures involved in sending a letter: the
first involving the sender of the letter and concerned with the preparation of
the letter itself and the second with the transfer of the addressed envelope to
the intended recipient by the postal service. We note also that the structure
and content of the letter itself has only meaning to the sender and recipient
of the letter,

In a similar way, the sending of electronic mail involves two separate pro-
cedures. The first is concerned with the entry of various fields — including the
sender’s and recipient’s name/address at the head of the message — and the
actual message content via the UA; the second with the encapsulation of the
message into an (electronic) envelope containing the sender’s and recipi-
ent’s address and with the transfer of the envelope over the network by the
message transfer system. In the case of electronic mail, however, since the
writing of the addresses on the envelope is performed by the mail system
itself, it is necessary for the addresses at the head of the message to have a
standard structure so that they can be extracted and used directly by the mes-
sage transfer system. The terminology associated with the structure of an
email message showing these two parts is shown in Figure 14.8(a).

As we can see, during its transfer across the network an email message is
composed of an envelope and the message. The envelope contains the emai'
address of the sender of the message (MAIL FROM) and its intended recipi-
ent (RCPT TQ). In the case of the Internet, all email addresses are of the
form user-name@mailserver-name where mailserver-name is the DNS name of the
mail server and user-name is selected by the user and confirmed by the local
mail manager at subscription/registration time. The manager also creates an
IN mailbox for the user on the mail server at the same time.

The format of an email address is defined in RFC 821 and, as we shall see,
the recipient mailserver-name is used by the message transfer system to route
the message over the Internet to the intended recipient mail server and the
user-name is then used by the MTA to determine the IN mailbox inte which
the mail should be deposited. Like a DNS name, the user-name is case insen-
sitive and the two names are separated by the @ symbol.

The message itself is composed of a header and a body, the latter contain-
ing the actual message that has been entered by the user via the UA., As we
show in Figure 14.8(b), the header comprises a number of fields some of
which are optional. Also, since there are many different vendors of UA soft-
ware, the optional fields that are used by the UA in the sender and those used
by the recipient UA may differ. However, all of the header fields have a stan-
dard format which is defined in RFC 822. Fach field comprises a single line of
ASCII text starting with the (standardized) field name. This is terminated by

{a)

14.3 Electronic mail ‘ 911

Message body

PC/
workstation,/
STB

fMessage

(b)

Used also by
the message
fransfer system

Used by
UA/ user

Userdefined {

Envelope and message headers

T
o

|
-

Mail server Mail server
The Internel

PC/
workstation/
STB

Message
transfer
system

Access
netwark

Access
network

From: Email address of person who created the message
To: Email address of primary recipient

Ce: List of email addresses of other (secondary} recipients
Recaived: Route followed through message transfer sysiem
Return-Path: Name of last MTA

Sender: £mail cddress of the sender of the message

Date: Date and time message was sent by UA
Messaged: Unique identifier assigned 1o the message by the UA
Reply-To: Email address to which a reply should be sent
Subject: Single-line title of he message

X-PhoneNumber: Sender's phone number
¥-FaxNumber: Sender's fax number

Figure 14.8 Email message structure: (a) terminology and usage; (b) selection of the fields
in the message header and their use.

a colon and is followed by the field value. A single blank line is then used to
separate the header from the message body.

As we can see, some fields are also used by the message transfer system
and others by the UA/user. It is also possible for a user to add one or more
private header fields. Some examples of fields in each category are shown in
the figure together with their usage. Most are self explanatory. Note, however,
that From: and Sender: may be different. For example, the person who created
- and is sending - the message (From:) may be the secretary of the person

912

Chapter 14 Internet applications

14.3.2

who is identified in the Sender: field. Also, if the reply to the message should
be sent to a third party, then the email address of the person who is to receive
the reply is in the Reply-To: field.

Note also that even though the Received: and Return-Path: fields are in the
header of the message - rather than the envelope - they are used primarily by
a nctwork manager during fault diagnosis to determine the path that is fol-
lowed by a message through the message transfer system. To initiate this
procedure, the source MTA enters its own name together with the message
identifier and the date and time the message was sent in a Received: field. A
new Received: field containing the same information is then added to this by
each MTA along the path that the message takes. In the case of the Return-
Path: field, this contains only the name of the last MTA. In practice, however,
this field is often not used and, if present, contains only the email address of
the sender. Note that user-defined fields must always start with the character
sequence X-.

In RFC 822, the transfer syntax used for all the header fields is the US
version of the ASCII code we showed earlier in Figure 2.6(a) with the addi-
tion that each 7-bit character is first converted into an 8-bit byte by adding 2 0
bit in the most-significant bit position. Also, the codeword used to represent
an end-of-line is the 2-byte combination of a carriage return (CR) and a line
feed (LF) and, because of this, the codeword for a CR is the 2-byte combina-
tion of a CR and a NUL. This modified version of the ASCII codeword set is
called network virtual terminal (NVT) ASCII,

Message content

With the RFC 822 standard the content part of a message ~ the body — can
only be lines of ASCII text with the maximum length of each line set at 1000
characters. The sending UA then converts each character into NVT ASCII as
the transfer syntax with each character converted into its 8-bit form. This
ensures that there can be no combinations of codewords in the content field
that can be misinterpreted by an MTA as a protocol message.

The RCF 822 standard was first introduced in 1983 and is still used widely
for sending text messages. As the use and coverage of the Internet widened,
however, so the demand for alternative message types increased, for example,
to allow messages to contain binary data and other media types such as audio
and video. Also messages containing different languages and alphabets. As a
result, an extension to the RFC 822 standard was introduced. This is known as
Multipurpose Internet Mail Extensions (MIME). It was first specified in RFC
1341 and later updated in RFCs 2045/8.

The aim of MIME was to enable users to send alternative media types in mes-
sages but still use the same message transfer system. The solution was to add a
number of extra header fields to the existing fields which collectively enable the
user to define alternative media types in the message body. It also provided a way
of converting the alternative media types that are supported into strings of ASCII
characters which can then be transferred using NVT ASCIL

14.3 Electroni¢ mail | 913

MIME headers

The additional MIME header fields and their meaning are listed in part (a)
of Table 14.1, The first field following the standard header fields is the MIME-
Version: which, when present, informs the recipient UA that an alternative
message content to ASCII text is present in the message body. It also includes
the version number of MIME that is being used. If the field is not present, the

Tahle 14.1 MIME: (a) additional header fields; (b) alternative content
types.

Meaning

iy e

: tdermher mgned l‘.w the UA

914

Chapter 14 Internet applications

recipient UA assumes the content is NVI ASCIIL When it is present, the fol-
lowing four fields then expand upon the type of content that is there and the
transfer syntax that is being used.

The Content-Description: field is present to altow a user to enter a short tex-
tual string in ASCII to describe to the recipient user what the contents are all
about. It is similar, therefore, to the subject: field in the standard header. One
or other is often used to decide whether the message/mail is worth reading.
Similarly, the Content-Id: field performs a similar function to the Message-Id:
field in the standard header.

The Content-Type: field defines the type of information in the message
body. The different types are defined in RFC 1521 and a selection of them are
listed in part {b) of the table. As we can see, each type comprises two parts: a
specification of the type of information — text, image, and so on — followed by
a subtype. The type of information in the message body is then defined by a
combination of the type and its subtype, each separated by a slash. Some
examples are:

Content-Type: Text/Richtext
Content-Type:Fmage/[PEG

Some contain one or more additional parameters. The format used is as follows:

Content-Type:Text/Plaintext; charset=US-ASCI]
Content-Type: Multipart/Alternative;boundary="NextType"

Clearly, for each type/subtype combination a standard format must be used
50 that the recipient UA can interpret {and output) the information in a
compatible way with how it has been encoded by the sending UA. Hence asso-
ciated with each combination is a defined (abstract) syntax. For example, the
Text/Plaintext combination implies the contents are ASCII text while for the
Text/Richtext combination a markup language similar to HTML is used, an
example of which we showed earlier in Figure 2.8. Similarly, digitized images,
audio, and video are all represented in their compressed form. As we saw in
Chapters 3 and 4, there is a range of standard compression algorithms avail-
able with each of these media types. In the case of images, for example, the
two alternative subtypes supported are GIF - Section 3.4.1 - and JPEG -
Section 3.4.5. The subtype selected for audio is a form of PCM — Section 4.2.1
- and that for video a version of MPEG - Section 4.3.4. In the case of a movie
(video with sound), the MPEG subtype is used with the audio and video inte-
grated together using the format we described in Section 5.5.1.

The Application: type is used when the body contents require processing
by the recipient UA before they have meaning on the user’s display, For
example, an Octet-stream subtype is simply a string of bytes representing, say, a
compiled program. Typically, therefore, on receipt of this type of information
the UA would prompt the user for a file name into which the data should be
written. Similarly, for the Postscript subtype unless the UA contains a
PostScript interpreter to display the contents on the screen.

14.3 Electronic mail 915

The Message: type is used when the contents relate to another MIME mes-
sage. For example, if the contents contain another RFC 822 message, then the
Rfc822 subtype is used, possibly to forward a message. Similarly, the Partial sub-
type is used when the contents contain a fragment of a (larger) message.
Typically, additional parameters are then added by the sending UA to enable the
recipient UA to reassemble the complete message. This feature is used, for exam-
ple, to send a long document or audio/video sequence. The External-body
subtype is used when the message content is not present in the message and
instead an address pointer to where the actual message can be accessed from; for
example, the DNS name of a file server and the file name. This feature is often
used to send an unsolicited message such as a long document. Typically, the UA
is programmed to ask the user whether he or she wishes 10 access the document
or not. Some examples of parameters with the different message subtypes are:

Content-Type: Message/Partial;id="file-name@host-name " number=1;total=20

Content-Type: Message/External-Body, access-type= "mail-server";server="server-name"

The Multipart: type is used to indicate that the message body consists of
multiple parts/attachments. Each part is clearly separated using a defined
delimiter in a parameter. With the Mixed subtype each part can contain a dif-
ferent content and/or type. With the Alternative subtype each part contains
the same content but with a different subtype associated with it; for example,
the same message in text or audio or in a number of different
languages/alphabets. Normally, the alternative parts are listed in the pre-
ferred order the user/sending UA would like them to be output. The Parallel
subtype indicates to the recipient UA that the different parts should be output
together; for example a piece of audio with a digitized image. Finally the Digest
subtype is used to indicate that the message body contains multiple other mes-
sages; for example to send out a set of draft documents that the sender may
have received from a number of different members of a working group.

An example of a simple multimedia mail showing a number of the fea-
tures we have just considered is shown in Figure 14.9. The message is simply
*#xHappy birthday Irene*** and this is sent in three different formats. The
first is in the form of an audio message which would necessitate the recipient’s
PC/workstation having a sound card with associated software. Also, the recipi-
ent UA must have software to interpret the contents of the accessed audio file
and output this to the sound card. If this is not available, normally the UAis
programmed to move to the next option and, if the UA cannot interpret rich-
text, then the message will be output in plaintext. As we can see from this,
what we have described in this section relates only to the (absiract) syntax of
the messages that are used by a UA to send a multimedia mail to another UA.
What the user sees/hears depends on how the UA has been programmed.

Transfer encoding

The next-to-last field in the MIME header we showed earlier in Table 14.1 is
the Content-Transfer-Encoding: field and an example of its use was shown in

916

Chapter 14 Internet applications

From: xyz@abe.com

To: abe@xyz.com

Subject. Hoppy birthday lrene

MIME-Version: 1.0

ConfentType: Multiport/Altlerative; boundary = TryAgain’;

- = TryAgain

ContentType. Message/Externatbody:;

name = "lrene audic";

directory = "lrene";

accesstype = "anonfip’;

site = "myserver.abc.com”;
ContentType: Audio/Basic; {Message in audio accessed remolely)
Conlent-TransferEncoding: Basetd

-~ TryAgain

Content-Type: Text/Richlext;
 »«+Happy birthday irenes«» [Message in richiext)

- - TryAgain

ConientType: Text/Plain;
~»»Happy birthday frenex «+ [Message in plaintext)

— = TryAgain

Figure 14.9 MIME: example type and subtype declarations.

Figure 14.9. As the name implies, it is concerned with the format of the mes
sage content during its transfer over the Internet. Since all the extension fields
in the extension header are in 7-bit ASCIL, they are encoded in 8-bit NVT
ASCIL Recall also that with an RFC 822 message, the UA uses the same trans-
ter syntax to send lines of 7-bit ASCII over the Internet in order to ensure
there can be no combinations of codewords in the content field that can be
misinterpreted by an MTA as an SMTP protocol message. With the additional
media types associated with MIME, however, the message content may be in an
8-bit form with a binary 1 in the eighth bit - a string of 8-bit speech samples
for example. As we indicated earlier, the aim of MIME is to use the same mes-
sage transfer system which means that the message body should be encoded in
NVT ASCIIL. Hence once the message contents have been input, the UA first
converts all non-ASCII data first into lines of (7-hit) ASCI! characters and then
into lines of NVT ASCII. Collectively this is referred to as transfer encoding.

Two alternative transfer encodings are defined in RFC 1521 for use with
an RFC 821-conformant message transfer system (MTA):

B quoted-printable: this is used to send messages that are composed of
characters from an alternative character set that is mostly ASCII but has a
small number of special characters which have their eighth bit set to 1.
Examples are all the Latin character sets;

I
14.3 Electronic mail | 917

W base64: this is used to send blocks of binary data and also messages
composed of strings of characters from a character set that uses 8-bit
codewords such as EBCDIC.

When the MIME header field contains Content-Transfer-Encoding: Quoted-
printable the UA converts the codewords of those characters which have their
eighth bit set into a string of three characters. The first is the = character and
this is followed by the two characters that represent the (8-bit) character in
hexadecimal. For example, if the codeword for a special character was 1 110
1001, then the hexadecimal representation of the character is E9 (hex).
Hence this would be converted into the three-character sequence =E9.

When the MIME header field contains Content-Transfer-Encoding: Base64
the message content, instead of being treated as a string of 8-bit bytes, is
treated as a string of 24-bit values. Each value is then divided into four 6-bit
subvalues, each of which is then represented by an ASCII character. The 64
ASCII characters used to represent each of the possible 6-bit values are listed
in Table 14.2. In the event that the contents of a message do not contain a
multiple of three bvtes, then one or two = characters arc used as padding.

Table 14.2 Baseb4 encading table.

ASCH &-bit
[f}liﬂ \-‘(H'LJL“ Coar oy V(’IIUE‘

(Hex) (Hex) {Hex)

918 Chapter 14 Internet applications

Example 14.1

14.3 Electronic mail | 919

14.1 Continued

Eneryption

As with all Internet applications, it is relatively straightforward to read mes-
sages during their transmission over the access networks and the Internet
itself. It is now becoming common practice with many companies, for exam-
ple, to monitor the email that is being sent and received by their employees.
Increasingly, therefore, people and organizations are applying encryption
methods to the mail messages that they send.

When two people are communicating using ASCII text and wish to foil a
casual eavesdropper from reading their mail, a simple approach to obtaining
privacy is to encode the message body using Baset4 before it is entered. This
can be done very easily by interpreting the stream of ASCII characters that
make up the message as a bitstream. Then, by applying Base64 to the bit-
stream, the resulting transmitted (NVT) ASCII character string is
meaningless to the casual eavesdropper.

For example, using the table of ASCII codewords in Figure 2.6(a), the
character string I LOVE in 7-bit ASCII is:

1001001(I) 0106000(SP) 1001100(L) 1001111(0) 1010110(V)
1000101 (E)

Hence, when this bitstream is interpreted as a string of 6-bit groups, it yields:
100100 101000 001001 100100 111110 101101 000101

In hexadecimal these are equivalent to:
24 28 09 24 3E 2D 05

or, using the Base64 encoding in Table 14.2, the ASCII character string:
k o] k + t F

which, of course, is less interesting should it be observed.

Clearly it is a trivial task to break this code and for applications that
demand a high level of security, a number of more sophisticated encryption
schemes are now used. Since it uses a number of the encryption methods we

920 | Chapter 14 Internet applications

discussed in the last chapter, we shal! limit our discussion to a widely used
scheme devised by Zimmermann called pretty good privacy (PGP). As we
shall see, PGP does not only provide a high level of privacy, but also authenti-
cation, integrity, and nonrepudiation. The various steps followed to encrypt a
message are shown in Figure 14.10. Normally the header fields are repeated
in the message body which is then encrypted.

LZP, 54MDI) [KJLZF, SMDY, RIK

P S,MD)

NVT ASCI

| t
| b
| 1
! t
1 i
1 t
| 1
| 1
| J
| J

|
|
|
|
I
I /

Plaintext
P
| I I :
| I I '
I I)
- [,)

Message
transfer
system

Error
Plaintext
P
INVT ASCII
LZIE, S4MDI) [KJLZP, S4MDI, RolK)
S = Sender's RSA secret key K, = Sender's IDEA secret key R, = Recipient's RSA secref key
Sp = Sender’s RSA public key Rp = Recipient's RSA public key

Figure 14.10 Email privacy: PGP encryption and decryption.

14.3.3

14.3 Electronic mail | 921

As we can see, the overall process involves a combination of MD5
(Section 13.5), RSA (Section 13.4.5), IDEA (Section 13.4.4) and Base64.
It also uses the Lempel-Ziv (LZ) compression algorithm we discussed in
Section 3.3.4.

The first block is concerned with authentication and nonrepudiation. It
uses the same scheme that we showed in Figure 13.6. This produces the plain-
text, P, and a 128-bit message digest (MD). The MD is then encrypted using the
sender’s RSA secret key, Ss. At the recipient side, the MD is again computed
using the same hash function and, if this is the same as the decrypted MD that
was sent with the message, this is taken as proof that the message was indeed
sent by the sender in the From: field of the message header. This is then taken
as authenticating the sender and, should it be necessary, nonrepudiation.

The output of the authentication and nonrepudiation block - P, S, (MD)
— is compressed using the LZ algorithm and the output of this is passed to the
encryption block. This is based on IDEA and uses a 128-bit secret key, K, to
encrypt the LZ compressed block. K_ is also encrypted using the recipient’s
RSA public key, R, to produce RP(KS). This, together with the output of the
IDEA compression block, forms the binary output. Finally, this is Base64
encoded to yield an ASCII string which is then transmitted in the form of an
NVT ASCII string.

The processing at the receiver is the inverse of that carried out at the
sending side. First the sender’s IDEA secret key, K, is obtained by using the
recipient’s RSA secret key, R, to decrypt R (K,). K, is then used to decrypt
the LZ compressed block. After being decompressed, the resulting output is
passed to the authentication and nonrepudiation block.

It should be noted that, because of the high processing overheads associ-
ated with RSA, the two RSA stages operate only on small block sizes, the first
the 128-bit MD and t' - secound the 128-bit secret key used by IDEA. Also the
message contents are encrypted using IDEA which, as we saw in Section
13.4.4, is very fast

Message transfer

The main components that make up the message transfer system are shown in
Figure 1<.11(a). Once a user has created a mail message and clicked on the
SEND button, the UA first formats the message into NVT ASCH and then sends
it to the UA server in its local mail server using the protocol stack of the access
network. On receipt of the message, the UA server deposits the message into
the message queue ready for sending by the MTA over the Internet.

The client MTA checks the contents of the message queue at regular
intervals and, when it detects a message has been placed in the queue, it pro-
ceeds to format and send the message. The MTA first reads the email
addresses from the From: and 7o: fields of the message header and writes
them into the MAIL FROM: and RCPT TO: fields in the envelope header. It
then examines the Ce: field in the message header and, if other recipients are
listed, it proceeds to create further copies of the message each with a differ-
ent RCPT TO: value in the envelope header.

’

922 | Chapter 14 Internet applications

{a)
Mail server Mail server
Port X/Y = ephemeral ports Port 25 = wellknown port number of server MTA
(b}
Commands (Client MTA — Server MTA) Descriptions
HELO Mailservername Sends DNS name of the client mail server
MAIL FROM: <emcil address of sender> email address of sender
RCPT TO: <email address of recipient> email address of recipient
DATA Request to send the message
Qur Requests recipient server fo close TCP connection
RSET Abort current mail transfer
{e)
Responses {Server MTA — Client MTA) Descriptions
220 Recipient server is ready
221 Recipient server is closing TCP connection
250 Command carried out successfully
354 _____ . Indicates tme recipient server is ready to receive messoge
421 Service request declined
450 Mailbox unovailable
: : Errer responses
551 Addressed user is not here

Figure 14.11 SMTP: {(a) components; (b) command messages; (c) response messages.

14.3 Electronic mail | 923

As we saw earlier, all email addresses are in the form user-name@mailserver-
name where mailserver-name is the DNS name of the mail server. Hence before
the client MTA can send any of the formatted messages over the Internet, it
must first obtain the IP address of each of the recipient mail servers. As we
taw in Section 14.2.5, this is done using the resolver procedure that is linked
to all Internet APs. Once the set of IP addresses have been obtained, the
client MTA is ready to initiate the transfer of each message. The protocol that
is used to control the transfer of a message from one MTA to another is the
simple mail transfer protocol (SMTP). The various control messages that are
used by SMTP and the sequence in which they are exchanged are defined in
RFC 821. All the control messages are encoded in NVT ASCIL

Each message is transferred over a previously established TCP connec-
tion. Hence to send each message, the client MTA first initiates the
establishment of a logical connection between itself and the MTA server in
the recipient mail server using the latter’s IP address and port 25 which is the
well-known port number for SMTP. The server MTA accepts the incoming
(TCP) connection request and, once this is in place, proceeds to exchange
SMTP control messages (PDUs) with the client MTA to transfer the message.
The control messages that are sent by the MTA client are called commands
and a selection of these are shown in Figure 14.11(b). As we can see, most are
composed of four uppercase characters. The MTA server responds to each
command with a three-digit numeric reply code with (optionally) a readable
string. A selection of the reply codes are given in Figure 14.11(c).

A typical exchange sequence of SMTP control messages to send a mail
message is shown in Figure 14.12. To avoid confusion, the TCP segments that
are used to transfer the messages are not shown. As we can see, once the
server has received the acknowledgment indicating a TCP connection is nniow
in place, the server MTA returns a 220 response indicating it is ready to start
the message transfer sequence. This starts with the MTA client sending a
HELO command and the MTA server returning a 250 response indicating it
is prepared to accept mail from the sending server. The client MTA then
sends the sender’s email address and, if this is accepted, it sends the intended
recipient’s email address. In the example, this is accepted by a 250 response.
If this was not acceptable, typically the MTA server would return either a 450
{mailbox unavailable) or a 551 (addressed user is not here).

Assuming both addresses are valid, the client proceeds to send a DATA
command to determine if the server MTA is now ready to receive the message
itself. If it is, the server returns a 350 response and, on receipt of this, the
transfer of the message takes place. The message consists of multiple lines,
each of up to 1000 characters, with a single “.” character on the last line. All
characters are encoded in NVT ASCII. Note also that the number of TCP seg-
ments used to transfer the message is determined entirely by the two TCP
entities. On receipt of the (reassembled) message, the server MTA transfers
the message to the IN mailbox of the recipient user and returns a 250
response to the client MTA. The latter then sends a QUIT command to
request the MTA server closes the TCP connection.

924 Chapter 14 Internet applications

MTA client MTA server
TCP connection —a= SYN
request issved SYNSACK e §
_— ACK TCP connection
i —» {0 pord 25
established
290/ ABC.com/Mail server ready
HELO/XYZ couk
250,/ ARC. com/Hello, XYZ.couk
MAILFROM: <Fred@XY7 co.uks
950 Sender address ok
RCPT IO <Susan@ABC coms
250 Recipient address ok —
DATA
354 Ready for message, termingte with " on g new line
r Segment 1
Message in NVT ASCI! Segment 2 e
consisting of multiple -
iines, each of up to :
1000 characters with |
asingle "." on the |
last fine, sent !
L Segment N
— Message transfered
User informed 250 message accepted 10 IN mailbox of
by UA client that] ; Susan@ABC .com
message has Qurr
been sent
221 ABC .com closing TCP connection
FIN - 1CP connection
FIN+ACK termination issued
TCP connection ACK -
terminated -]

Figure 14.12 Example emaif message transfer from Fred@XYZ.co.uk to Susan@ABC.com

using SMTP.

14.4

14.4.1

14.4.2

14.4 FTP | 9258

The UA client in each user terminal periodically sends an enquiry to its
local UA server to determine whether any new mail has arrived. Hence when
the UA server next receives an enquiry from the UA client in the recipient’s
terminal, it transfers the received message to the UA client. The latter then
places the message in the user’s IN mailbox and, typically, outputs a message
indicating a new (mail) message has arrived.

At the sending side, once the MTA client receives the final 250 response
indicating the message has been transferred successfully, it informs the UA
server. The latter then informs the UA client in the sending terminal and
this, in turn, informs the user that the message has been sent,

FTP

The transter of the contents of a file held on the file system of one computer to
a file on another computer is a common requirement in many distributed/net-
worked applications. In some applications the two computers involved may
both be large servers each running a different operating system with a different
file system and character set. In another application, one of the computers may
be a server and the other an irem of equipment such as a cable modem or a set-
top box which does not have a hard disk. Hence in this case all the data that is
transterred must have been formatted specifically for running in the cable
modem or set-top box. Clearly, therefore, the file transfer protocol associated
with the second type of application can be much simpler than the first. Hence
to meet the different requirements of these two types of application, there are
two Internet application protocols associated with file transfer. The first is
called the file transfer protocol (FTP) and the second the trivial file transfer
protocol (TFTP). In this section we give an overview of the operation of FTP
and we describe the operation of TFTP in the next section.

Overview

FTP is a widely used Internet application protocol that has been designed to
enable a user at a terminal to initiate the transfer of the contents of a named
file from one computer to another using the TCP/IP protocol suite. The two
compulters may use different operating systems with different file systems
and, possibly, different character sets. It also supports the transfer of a
number of different file rypes such as character and binary. It is specified in
RFC 959. We describe first how the file contents are represented and then
the operation of the protocol itself. We conclude with some examples.

File content representation

Although FTP has been designed to enable files stored in many different
types of computer to be transferred, to gain an understanding of FTP’s opera-
tion without including too much detail, we shall limit our description to file

926

Chapter 14 Internet applications

14.4.3

User

transfers involving just two different file types, ASCII and binary, and files
containing a stream of bytes with no internal structure. As with the contents
of email messages, for a file containing 7-bit ASCII characters the file con-
tents are first converted into NVT ASCII by the sending side before they are
transferred. They are then converted back again into 7-bit ASCII at the recipi-
ent side for storage. With a binary file, the end of the file is signaled by the
sending side initiating the closure of the TCP connection.

FTP operation

A schematic diagram showing the essential components involved in a file
transfer using FTP is shown in Figure 14.13. The computer initiating the
transfer request is called the client and the computer responding to the
request the server.

As we can see, each FTP entity consists of two parts: a control part and a
data transfer part. The control part is concerned with the exchange of control
messages — commands and their replies — relating to the file to be transferred,
and the data transfer part with the actual transfer of the file contents.

Commands s

e Replies

Server

Control connection

IP network

Data connection

File contents

Ports 1216/1217 = ephemeral ports Port 21 = weltknown pert of control connection

Port 20 = weltknown port of data connection

Figure 14.13 FTP components and terminology.

14.4.4

14.4 FTP | 927

The user interacts with his or her local FTP through an appropriate
{user) interface. The user interface sofiware then converts each command
that is selected/entered by the user into a standard format that is understood
by the FTP control part. There is also a standard format used for each
FTP command and response message exchanged by the control part in the
two computers.

On receipt of the first command from the user, the (FTP) control part in
the client initiates the establishment of 2 TCP connection between itself and
the control part in the server. This is called the control connection and it
remains in place until the related file transfer has been carried out. The port
number at the client side is an ephemeral port — shown as 1216 in Figure
14.13 — and that at the server side port 21 which is the well-known port
number for the FTP control connection. The reply message to a command is
returned by the control part in the server over the control connection.

A second TCP connection called the data connection is used for the
transfer of the contents of a specified file. Once the control part in the client
has sent and received the replies to all the command messages it has sent .
refating to the file transfer, it sends a further command informing the server
side of the ephemeral port number that should be used for its side of the
data connection. The control part in the client then issues a passive open and
waits for a TCP connection request (SYN) segment from the server side. On
receipt of the port number, the control part in the server proceeds to estab-
lish the TCP data connection using port 20 — the well-known port number for
the FTP data connection — as the source port and the received ephemeral
port as the destination port. Once this is in place, the contents of the speci-
fied file are transferred over this connection. Note that this can be in either
direction depending on the command and after the transfer has taken place,
the data connection is then closed by the side that sends the data. Finally, the
control connection is closed by the client.

Command and reply message format

A selection of some of the more common command messages that are sent
across the contro] connection (from the control part in the client to the con-
trol part in the server) are listed in part {a) of Table 14.3 and the structure of
the reply messages that are returned in the opposite direction in part (b). All
the command and reply messages are made up of ASCII characters. They are
encoded for transmission into 8-bit NVT ASCII with each command /reply
terminated by a CR/LF pair of characters.

As we can see, all the commands are in upper-case and many have para-
meters — referred to as arguments — associated with them. Most of the
commands are self explanatory. In the case of the PORT command, however,
the six parameters associated with it {nl-n6) are all decimal numbers. The
four decimal numbers nl-n4 form the IP address of the client host in dotted
decimal. The two numbers n5-n6 then specify the ephemeral port number

928

Chapter 14 Internet applications

Table 14.3 FTP client-server communication: (a) example commands;

‘(b) structure of the replies.

- f
fa) Commumd

for the data connection on the client side. Each port number is 16 bits long
and n5 is the decimal equivalent of the most significant 8 bits and n6 the least
significant 8 bits. Hence the two parameters n5 and n6 for port 1217 would
be 4, 193; that is, 4 X 256 + 193.

Each of the reply messages comprises a 3-digit code followed by an
optional text message. The first digit indicates the type of reply, positive (suc-
cessful) or negative. The second digit expands on this by indicating to what
the reply relates (control or data connection, data, and so on) and the third
digit gives additional information relating to error messages. A selection of

14.4 FTP i 929

some of the more commaon reply messages, together with a typical text
message, are as follows:

220 FTP server ready

331 Password required for <username>
230 User <username> logged in

215 Server OS Name Type: Version

200 File type acknowledged

200 PORT command successful

150 Opening ASCII/Binary mode data connection for <file name>
226 File transfer complete

221 Goodbye

425 Data connection cannot be opened
500 Unrecognized command

501 Invalid arguments

530 User access denied

14.4.5 Example

In order to illustrate the use of some of the listed commands and their replies
we shall show some example message exchanges.

There are three types of file transfer supported over the data connection:

the transfer of the contents of a named file from the client file system to
the server system; :

a similar transfer in the server—client direction;

the transfer of the listings of the files (or the directories in a file) held by
the server and saved in a named file on the client.

A typical exchange of commands and replies to carry out (successfully)

the transfer of a named file and file type from the server file system to the
client system is shown in Figure 14.14. The following additional comments
should be noted when interpreting the exchange sequence:

The client FTP control part has a resolver procedure linked to it and,
when the DNS name of the server is passed to it by the user interface, it
uses the resolver to obtain the IP address of the server.

If the user had issued a put<filename.type>, then the client (control
part) would send a STOR<filename,type> command. Also, since the file
transfer is in the client—server direction, if the TYPE is I, then the client
would initiate the closure of the data connection.

930 Chapter 14 Internet applications

FTP clien : FTP server
The user enters the DNS f
rame of the servar and : Server does o passive
o receprof this the SYN open on port2 1
conitich part does ar ;
active open ‘o port 2| SYNHACK :=;
far contro! connection [ACK !
— TCP control connection
f)
" 290 £TP server ready : to port2 1 established
User promted tar
prnm 2 () . %‘7
USEIName .
;
USER <usernames :
| 331 password required for usermame Nl
Liser promted for e
Dasswond
FASS<passward >
290 sser<usernameslogged in e
s OS By SysT
menuestog Dy client FTP
Samer OF vpe 215 NI TypeX Version ¥
52ver D5 WPE g
oulpul o user
User enters TYPE |
get <Hlencme pes)
200 Type | acknowledged k
Clier* sends its own P -
additmas and he se'ected
e~
por number that should — SR nl-né
be Jsed for the dat . — .
cnri.:::nﬂo\; Thin Cdjse(500 PORT command successtyl ———
& passive open or this — S e SETVET does an active
port numbet S — SYMNAACK : open to port 15, nG
TCP datn cornection 1o ALK —— TCFP data connection
pet N6 estabiished g et 1o port 20 established
e FIP sends RETR<filzname types
arnte Wpe + flaname 150 Opening binaty mode
- oo connecton forctilenome type>
U ocd § . 2724 Fie hansier complete
ser promted for
a command - il
& i
Assume quit - Gl T ;
%
: 221 Goodbye —_
T Fin -a— Server closes first
et FIN+ACK deota connection and
’ then th rrol
= e
e FIN'+ACK . -
ACK —

Figure 14.14 Example of command-reply message exchange sequence to get a file from the
FTP server.

14.4.6

14.5

14.5 TFTP 931

Anonymous FTP

The example shown in Figure 14.14 assumed that the (client) user had a
username/password on the named server. This is not always the case since
FTP is also used to access information from a server that allows unknown
users to log in to it. To access information from this type of server, the user
must know the DNS name of the server but, when prompted for a username,
he or she enters anonymous and, for the password, his or her email address.
Normally, in response, the server replies with something like

230 Visitor login ok, access granted

at which point the same procedure shown in the example in Figure 14.14
follows. ’

In some instances, hpwever, before granting the user access, the server
carries out a rudimentary check that the client host has a valid domain name.
Although the IP address of the client host has not been formally sent at this
point - this does not occur until the PORT command is sent — it is present in
the (IP) source address field of each of the IP datagrams that have been used
to set up the (TCP) control connection and to send the username and pass-
word. Hence before granting access, the control part in the server uses its
own resolver to check that the IP address of the host is in the DNS database.
As we saw earlier in the latter part of Section 14.2.5, this involves the control
part issuing a pointer query to the resolver with the host IP address in the
query name. If a valid domain name is returned, then access is granted as
before. If a negative response is received then access to the server is blocked
and, typically, the server sends a reply of

B30 User access denied, unknown IP address

TFTP

As we mentioned at the start of Section 14.4, TFTP is used mainly in applica-
tions in which one of the two communicating hosts does not have a hard disk.
Typically, TFTP is then used to download — normally referred to as bootstrap-
ping — the application code that is to be run on the diskless host. We showed
an application of TFTP earlier in Figure 11.5 and, as we explained in the
accompanying text, it is used to download the application code for cable
modems from the cable modem termination system (CMTS). As we shoved
in the figure, TFTP uses UDP as the transport protocol since this is less com-
plicated than TCP and hence requires less memory. The specification of
TFTP is given in RFC 1350.

932

Chapter 14 Internet applications

14.5.1

Protocol

There are just five message types (PDUs) associated with the TFTP protocol
and their format is shown in Figure 14.15. The first field in each message is
called the opcode and indicates the message type. The different types are
shown in the figure.

As with FTP the host/item of equipment that initiates a transfer is called
the client and the host that responds to the request the server. Each transfer
starts with the client making a request to the server either for a named file -
read request — or to receive a named file — write request. Hence in an applica-
tion such as downloading code, the diskless host is the client and the first
message that is sent is a read request (RRQ). The filename field in the message is
used to specify the name of the file on the server to be transferred/down-
loaded. The filename is an NVT ASCII string that is terminated by a byte of
zero. This is followed by the mode field which is also an NVT ASCII string indi-
cating whether the file contents are lines of ASCII text - netascii — or a string
of 8-bit bytes — octet. In both cases the string is terminated by a byte of zero.

The contents of the requested file are transferred by the server in one or
more DATA messages. Since UDP is a besteffort protocol, normally an error con-
trol protocol is used to transfer the complete file contents. The protocol
supported is based on the stop-and-wait (idle R(Q) error control scheme. It is a
variant of the protocol we showed earlier in Figure 6.23, the difference being
that there are no NAK messages and hence the retransmission of a lost DATA
message is triggered by the dmer for the message expiring. An example message
exchange illustrating the main features of the protocol is shown in Figure 14.16.

- IFi P message —-
Bytes ——» 20 8 2 2-512
IP header UDP heoder | Opcode | Message contents
? N i M 1
Read request [RRQ) = l opcode=1 l filename | 0] I mode 1 OJ
2 N | : M 1
Write request [YWRQ} = [opcode=2 filename I 0 l mode | 0 I
2 2 0-512
DATA = l opcode=3 | block numbar data J
2 2
ACK = [opcode= | block number |
2 2 N 1
ERROR |T'>pcode=5 lerror number| ernor message] 0] ‘

Figure 14.15 TFTP PDU message formats.

TFTP client

Receive list

-«— BN = V[R], occepl

3 VIRl=3

2
1

=— BN = V([R], accept
VRI=4

Contents <512, transfer complete
Start LAST ACK fimer

RRQ [filename, octet]

14.5 TFTP \ 933

DATA [BIN=1, 512 bytes]

ACK [BN=1]

DATA [BN=2, 512 bytes]

TFTP server
YIS} Reix list Fiée
VISi=1 | l ?
- Start timer
ViS'}"; Stop timer I__.J
- Start timer C3]

b

DATA [BN=2, 512 bytes]

"‘.-_ Timer expires

-~ Start timer

ACK [BN=21

OATA [BN=3, 320 byles]

—» Siop limer | |

~tlf-

V[S)=3
- Start timer

ACK [BN=3]

i

DATA [BIN=3, 320 bytes]

> 4

Yo ¢ .
= Timer expires

A

Discard message, send ACK - Y

Restart LAST ACK timer

|

ACK [BN=3]

Start timer

-
-

Timer expires —

Transfer complete

©E T e e i

i R R R KW

MJ

e

e = mssage lost

Figure 14.16 TFTP example PDU message exchange.

Y » Stop fimer
V(S|=4

Transfer complete

Recall that with the idle RQ protocol, the total message — the file con-
tents — are first divided into multiple blocks the size of each block
determined by the characteristics of the underlying data link/transport ser-
vice. With the TFTP protocol the maximum size of each block ~ the data field
in each DATA message — is 512 bytes. The end of a message/file transfer is
then indicated when a DATA message is received containing less than 512
bytes in it, that is, a data field containing from 0-511 bytes.

934

Chapter 14 Internet applications

As with idle RQ}, to detect duplicates, each DATA message contains a
sequence number — called the block number (BN) in TFTP - in the message
header and, on receipt of each errorfree DATA message, an ACK message is
returned containing the same BN within it as that contained in the DATA
message. To implement the scheme, the server side maintains a send
sequence variable, V(S), which contains the BN that is to be allocated to the
next DATA message to be transmitted, and the client side maintains a receive
sequence variable, V(R), which indicates the BN in the next in-sequence
DATA message it expects to receive. Both are initialized to 1.

The transfer starts with the client sending a RRQ message containing the
filename and file type. In response, the server proceeds to send the contents
of the filename. In the example file transfer shown in Figure 14.16 the file
contents are assumed to require three DATA messages shown as 1, 2, and 3.
The following should be noted when interpreting the sequence shown:

B The first DATA message (BN = 1) is assumed to be received and
acknowledged correctly and hence both V(S) and V(R} are now
incremented to 2.

B The second DATA message (BN = 2) is corrupted and hence is not
received. This can be due, for example, to the IP datagram containing
the DATA message being discarded during its transfer or the checksum
in the UDP header failing in the client.

B At the server side, the absence of an ACK for BN2 means that the
retransmission timer expires and another attempt is made to send it.

@ This time it is assumed to be received correctly and both V(S} and V(R)
are now incremented to 3.

B When the last DATA message is sent (BN = 3), this is received free of errors
and hence V(R) is incremented to 4 and an ACK is returned with BN = 3.

B During its transfer, the ACK is corrupted/lost and hence the
retransmission timer in the server expires. The server retransmits
another copy of BN3 which is assumed to be received error free.

B The client determines from the BN that the message is a duplicate -

BN =3 instead of 4 — and hence discards it but returns an ACK to stop
the server from sending another copy.

® The client determines that the file has now been received by the fact that
the contents of BN3 are less than 512 bytes.

B The LAST ACK timer is used to allow for the possibility of the last ACK
being lost.

@ Should the number of attempts to send a block exceed a defined limit,
then an error message is sent and the transfer aborted.

In the case of a write request, the client sends a WRQ) message with the
filename and mode in it and, if the server is prepared to accept the file, it
returns an ACK message with a BN = 0. The client side then proceeds to send
the file contents using the same procedure as for a read request.

14.6

14.6.1

14.6 Internet telephony 935

A number of error messages are also provided. The particular error mes-
sage is indicated by the value in the error number field. The contents in the error
message field then contain an additional text message in NVT ASCII that is ter-
minated by a byte of zero. In addition, even though there is no authentication
procedure associated with TFTP, in most implementations the server only
allows the client to read or write from/to a specific file name or names.

Internet telephony

Unlike email which uses the services provided by the message transfer sysiem
as an intermediary between the two (or more) communicating participants,
Internet telephony requires a communications path that supports real-time
communications between the two or more participants involved in the
call/session. Also, although the early IETF standards relating to Internet tele-
phony were concerned with providing a basic two-party telephony service
between two IP hosts, the more recent standards provide a more versatile
facility supporting multiparty calls/sessions involving audio, video, and data
integrated together in a dynamic way. The number of participants involved
can vary as the session proceeds. Also, the location of each participant is not
necessarily at a fixed IP address. For example, at one point in time a partici-
pant may be using a workstation attached to an enterprise network while at
another time using a PC at home or, possibly, a fixed or mobile phone.

Thus the main requirement associated with Internet telephony is a set of sig-
naling protocols that support, in addition to call/session establishment, features
for dynamic user Jocation and the negotiation of a suitable set of capabilities that
are supported by all the user devices involved. In this section we describe the
main features of three of the protocols that have been defined by the IETF to
provide these services. These are the session initiation protocol (SIP), the ses-
sion description protocol (SDP), and the gateway location protocol (GLP).

SIP

SIP provides services for user location, call/session establishment, and call
participation management. It is a simple request-response — also known as
transaction — protocol and is defined in RFC 2543. The user of a host device
that wants to set up a call sends a request message — also known as a command
or method — to the user of the called host device which responds by returning
a suitable response message. Both the request and response are made through
an application program/process called the user agent (UA} which maps the
request and its response into the standard message format used by SIP.

Each UA comprises two parts, a UA client (UAC), which enables the user o
send request messages ~ to initiate the setting up of a call/session for exampl- -
and a UA server (UAS) which generates the response message determined by t'ic
user’s response. A schematic diagram showing a typical stack associated with
Internet telephony is shown in Figure 14:17(a) and a list of the request and
response messages used by SIP — together with their usage —is shown in part (b}

936 | Chapter 14 Internet applications

{a)
1/0 devices User Data devices
%
RTP = realtime transport protocol UAC = user agent client SIP = sessicn initiction
RTCP=reakMime transport contral protoco! UAS = user agent server protecol
(b)
SIP message Usage
INWITE Iwites @ user to join a call/session
ACK Used 1o acknowledge receipt of an INVITE response messge
REGISTER Used 1o inform a SiP redirect server of the current loccction of o user
OPTIONS Used 1o request the capabilities of o host device
CANCEL Terminates a search for a user
BYE Inform the other userls) that the user is learning a call/session

Figure 14.17 Internet telephony: (a) example host device protocol stack; (b) SIP
request/response signaling message types.

Each request and response message comprises a header and a body. The
header contains a set of fields a number of which are similar to those used
with email. For example, a selection of the header fields associated with the
INVITE request/response message include:

14.6 Internet telephony | 937

To: The SIP address of the called participant
From: The SIP address of the caller

Subject: A brief title of the call

Call-ID: Unique call identifier assigned by the caller
Require: List of capabilities the host device can support

Content-Type: Type of information in the message body
Content-Length: Length of body contents

Each SIP name/address is similar to an email name/address with the
addition that it has a prefix of sip. Hence two example SIP name/addresses
might be sip:tom. C@university.edu and sip:karen. S@company.com.

The type of call/session being set up is determined by the contents of the
message body which describes the individual media streams to be used in the
call. These are defined using the companion SDP protocol which we describe
in the next section.

As we have just seen, a 5IP name/address is similar to an email name/
address. Hence before a SIP message can be sent over the Internet it is neces-
sary first to obtain the IP address of the intended recipient host. As we
indicated earlier, a user may be contactable at a number of alternative loca-
tions. Hence when a user registers to use the Internet telephony service, the
user provides a number of alternative SIP addresses where it can be located.
For example, karen.S may be contactable at either sip:karen.S@company.com or
sip:karen. S@organization.org. This list of names is then sent to a server called
the redirect server at each of the sites involved — for example, company.com and
organization.org — using a REGISTER message with the list of alternative
addresses in the Contact: header field. B

To explain how a call/session is set up we shall use two examples. In the
first, we assume the called user is currently at the given SIP address. Figure
14.18(a) shows the protocols and network components that are used to set up
the call. To simplify the description, assume that the SIP name/ address of
the calling user is sip:tom. C@university.edu and that of the called user is
sip:haren. S@company.com.

Associated with each access network — enterprise network, campus, and so
on — is a secorid server called a proxy server to which all SIP INVITE messages
are sent. In the figure we show these as PS-A and PS-B. Each host knows the IP
address of its local proxy server. Also, the proxy server knows the SIP name
and address of each user that is currently logged in at the site and the I?
address of the user’s host device. Typically, the latter is determined using ARP.

On receipt of an INVITE request message from the calling host, PS-A first
reads the SIP name/address from the To: field in the message header and
proceeds to obtain the IP address of the proxy server for company.com (PS-B)
using the domain name service (DNS). On receipt of this, the SIP in PS-A
sends the INVITE request message to PS-B. The latter first reads the SIP
name/address from the To: field in the message header and determines from

938 Chapter 14 Internet applications

{a)
Calling host PS-A P5-8 Caolled host
- A A I i A Iy -
Access network Access network
o Glebal internet
{university.edu) {zompany.com)
SIP = session inftiation protocol PS = [SIP) proxy server
(b) Access network B
{company.com)

[]

Banvennam

Access network C

[0]

RraEE R

4
|
|
|
1

! H
| 5 M
Access retwork A ().
I .

ol A SN TR

YPITII I SR NMNEsEamREZRENEEEc AR AR

EEmzansaa SamuEAssEssEsbmsEmmmmavaanmEnRNpE Arsamwmaman

[7

funiversityedo) _ _ _ _ _ __ _ _ ___ ___ | {erganization.org)

RS = redirect server

Figure 14.18 SIP message routing examples: (a) direct using proxy servers; (h) indirect
using a redirect server.

this firstly, that karen.$ is currently logged in ac this location and secondly, the
local IP address of the called host. It then uses the IP address to send the INVITE
request 1o the called host. Assuming the latter is able to accept the call, an
INVITE response message is returned over the same path. On receipt of this, the
SIP in the calling host returns an ACK message and it is at this point that the two
users/hosts can start to exchange the information relating to the call.

In the second example we assume thar the called user sip:karen.S is cur-
rently located at organization.org not company.com. Hence this time, on receipt
of the INVITE request from PS-A, PS-B determines that karen.S is not

14.6.2

14.6.3

14.6 Internet telephony | 939

currently logged in at this location and hence forwards the request to the
redirect server for the site, RS-B. As we indicated earlier, the latter has the list
of alternative SIP addresses for this user and determines from this that
karen.S can also be located at organization.org. The SIP in RS-B returns this
information in a Contaci: header field in the INVITE response message. On
receipt of this, PS-A proceeds as before but this time by first obtaining the IP
address of the SIP proxy server at organization.org using the DNS. A summary
of the message sequence involved is shown in Figure 14.18(b).

SDP

As we indicated earlier, the role of the session description protocol (SDP) is
to describe the different media streams that are to be involved in a call/ses-
sion and also additional information relating to the call. This is described in
each SIP message body in a textual format and includes:

B media streams: a multimedia call/session may involve a number of
different media streams including speech, audio, video, and more
general data. The proposed list of media types and their format are
contained in the message body. Each SIP INVITE request message
contains a list of the media types and the compression formats that are
acceptable to the calling user (host device) and the INVITE response
message contains a possibly modified version of this that collectively
indicates what is acceptable to the called user;

B stream addresses: for each media stream, the destination address and
UDP port number for sending and/or receiving each stream is indicated;

m start and stop times: these are used with broadcast sessions and enable a
user to join a session during the time the broadcast is being carried out.

GLP

The two examples we considered in Section 14.6.1 assumed that the two host
devices — or more if multicast addresses are used — were both attached
directly to the Internet. In some instances, however, one of the host devices
may be attached to a different network such as a PSTN or ISDN. Such cases
require a device called a gateway to convert the different signaling messages —
a signaling gateway (SGW) — and the different media formats — a media
gateway (MGW).

In practice, both the PSTN/ISDN and the Internet are global networks/
internetworks. Hence when the called user is attached to a PSTN/ISDN,
because of the potentially higher bandwidth associated with the Internet, it is
preferable to utilize the Internet for as much of the connection path as possi-
ble. To do this requires, firstly, a gateway associated with each PSTN/ISDN
access network and secondly, when a call is made, to utilize the gateway that is
closest to the called — or calling — user. As we saw earlier in Figure 9.9, the

940

Chapter 14 Internet applications

segment/
subnet

587

AN
GlP
SS7

Internet is composed of an interconnected set of networks/internetworks.
Typically, therefore, each Internet regional/national network has a number
of gateways associated with it. Also, each of these networks has one or more
location servers (LS). This general architecture is shown in Figure 14.19.

As we can deduce from the figure, when the called user device is attached
10 2 segment/subnet of a PSTN/ISDN, the SIP INVITE message must be sent
to the (signaling) gateway that is nearest to the segment/subnet to which the
called terminal equipment is attached. The main issue, therefore, is, given a
conventional telephone number, how is the INVITE message routed to the
gateway that is nearest to the subscriber with this number? This is the role of
the location servers and their operation is as follows.

Each gateway knows the regional/national code of the segment of the
PSTN/ISDN 1o which it is attached. Typically this is entered by network man-
agement. In addition, on the Internet side, each gateway has an IP address
and it also knows the IP address of the LS(s) that is (are) attached to the
same (Internet) regional/national network. Each gateway then uses the IP
address of each of its local LSs to inform them of the regional/national code
of the segment of the PSTN/ISDN to which it is attached. In this way, each L§

Internet Internet

: - Internet
regional/ . backbone

national
network

regional/
national

segment,
subnet

557

GLP

H
]

signaling/medio gateway
location server

Infesnet occess network GwW
gateway location protocol LS
signaling system number 7

I
L]

Figure 14.19 Interworking between Internet hosts and PSTN/ISDN terminal equipment.

14.7

14.7 SNMP | 941

learns the regional/national codes of the segments of the PSTN/ISDN to
which all of its gateways are attached and, from this, the IP address of the
gateway that should be used for each of these codes.

Each LS then exchanges this information with each of the other LSs
using the gateway location protocol (GLP). In this way each LS builds up a
database of the IP address of the LS that should be used to reach all of the
gateways in other regional/national networks and also the PSTN/ISDN
codes associated with each of these gateways. Thus the gateway local proto-
col which carries out this function is very similar to the interdomain routing
protocol BGP — the border gateway protocol — which we described earlier in
Section 9.6.5. Indeed, GLP is based on BGP and hence we shall not expand
upon it here.

SNMP

The simple network management protocol (SNMP) is concerned not with
providing Internet-wide application services to users — SMTP, FTP, and so on
— but rather with the management of all the networking equipment and pro-
tocols that make up the Internet. As we saw in earlier chapters, the Internet is
composed of a range of different items of networking equipment. These
include LAN bridges, subnet routers, access gateways, interior gateways/
routers, exterior gateways, communication links/subsystems, and so on, all of
which need to be functioning correctly.

Clearly, in any networking environment, if a fault develops and service is
interrupted, users will expect the fault to be corrected and normal service to be
resumed with a minimum of delay. This is often referred to as fault management.
Similarly, if the performance of the network — for example, its response time or
throughput — starts to deteriorate as a result of, say, increased levels of traffic in
selected parts of the network, users will expect these to be identified and addi-
tional equipment/ transmission capacity to be introduced to alleviate the
problem. This is an example of performance management. In addition, most of
the protocols associated with the TCP/IP suite have associated operational para-
meters, such as the time-to-live parameter associated with the IP protocol and the

_retransmission timer associated with TCP. As a network expands, such parame-

ters may need to be changed while the network is still operational. This type of
operation is known as layer management. Others include name management,
security management, and accounting management.

Associated with each managed element — a protocol, bridge, gateway, and
s on - is a defined set of management-related information. This includes vari-
ables — also known as managed objects - that can be either read or written to by
the network manager via the network. It also includes, when appropriate, a set
of fault reports that arc sent by a managed element when a related fault occurs.
In the case of IP, for example, a read variable may relate to, say, the number of
IP datagrams/ packets discarded when the time-to-live parameter expires, while

* a write variable may be the actual time-to-live timeout value. Similarly, in the

case of an exterior gateway, if a neighbor gateway ceases to respond to hello

942 Chapter 14 Internet applications

messages, in addition to modifying its routing table to reflect the loss of the
link, the gateway may create and send a fault report — via the network - to alert
the management system of the problem. If the management system receives a
number of such reports from other neighbors, it can conclude that the gateway
is probably faulty and not just a communications line failure.

SNMP is an application protocol so a standard communication platform
must be used to enable associated messages — PDUs — to be transferred con-
currently with the messages relating to user services. To achieve this,
normally SNMP uses the same TCP/IP protocols as the user application pro-
tocols. The general scheme is shown in Figure 14.20.

The role of the SNMP is to allow the manager process in the manager sta-
tion to exchange managementrelated messages with the management
processes — each referred to as a management agent - running in the various
managed elements: hosts, gateways, and so on. The management process in

Network management

Management

Network manager

Manager -
process :

Network-dependent
profocols

Management Management
agent agent agent

Host Gateway Host

SNMP = simple network management protocol

UDP = user datagram protocal MIB = management information base

Figure 14.20 Network management schematic and terminology.

14.7.1

14.7 SNMP 943

‘these elements is written to perform the defined management functions asso-

ciated with that element. Examples include responding to requests for
specified variables {counts), receiving updated operational variables, and
generating and sending fault reports.

Management information associated with a network/internet is kept at
the network manager station (host) associated with that network/internetin a
management information base (MIB). A network manager is provided with a
range of services to interrogate the information in the MIB, to initiate the
entry and collection of additional information, and to initiate network config-
uration changes. Clearly, the manager station is the nerve center of the
complete network, so strict security and authentication mechanisms are imple-
mented. Normally, there are various levels of authority depending on the
operation to be performed. In large internetworks like the Internet, multiple
manager stations are used, each responsible for a particular part of the
Internet. Examples include each campus/enterprise access network, each
regional/national network, the global backbone network and its gateways, and
so on. We shall describe first the structure of the management information
associated with the Internet and then the operation of the SNMP protocol.

Structure of management information

The management agent software in each networking element maintains a
defined set of variables — managed objects — which are accessible by the net-
work manager process using SNMP. In some instances, a variable can only be
read (read-only) and in others it can also be written to (read-write). The MIB
contains a similar set of variables/objects each of which reflects the current
value/state of the same variable in the managed element.

Clearly, in a large network/internet, the managed equipment may come
from a variety of different vendors, each with its own preferred processor/ micro-
processor. Hence, since all the management information relating to each item of
equipment is to be processed by a single management process - often running in
a computer that has a different processor from that used in the managed equip-
ment — it is essential to ensure that the management information relating to each
item of equipment has the same meaning in both the equipment and the man-
ager station. As we explained in section 13.2, one way of achieving this is to
define the data types of each of the managed objects associated with each item of
equipment using ASN.1. Then, to ensure that the value(s) associated with each
managed object is interpreted in the same way in both the equipment and the
manager station, before each value is transferred over the network it is first con-
verted into the related standard transfer syntax using the basic encoding rules
associated with ASN.1. This is now the standard approach used with most net-
work management systems including that associated with the Internet.

The current version of the MIB for the Internet is MIB-II and is defined in
RFC 1213. The data types of all the variables (managed objects) in the MIB are
a subset of the ASN.1 types we described in Section 13.2.1. These are listed in
Figure 14.21(a). In addition, a number of subtypes are used and a selection of
these, together with a description of their use, is given in Figure 14.21(b).

944 Chapter 14 Internet applications

()
Simpie types: INTEGER Constructed types: SEQUENCE
BITSTRING SEQUENCECGF
OCTETSTRING CHOCE
Display Sting
INULL
OBECT IDENTIFIER
(b)
Subtypes: lpAddress - OCTETSTRING of length 4 [IP oddress in dotted decimall
PhyAddress ~ QCTETSTRING of length & (MAC address)
Counter32 -~ a 32-hit counter, that increments modulo 232
Gauged2 - an unsignred integer in the range 0 to 292-]
Infeger32 - a 32-bit INTEGER
TimeTicks — & 32-bit counter that increments ot 1,/100s intervals
{c)
root
[
1 1 |}
itwt {O) iso (1) jointitutiso |3)
R I -
1
org (3]
‘- s -
T
dod (6)
- e . l -m o, .
internet (1)

I | | i I

directory {1] mgmt {2} experimental {3} private {4} security {3)
mib-2 (1) . enterprises (1]

r+

snmpv?2 (6]

-+

| | | | i i I
I

syslem (1) interfaces {2) at{3) ip (4] icmp (5] tep (6] udp {7)

r+ = o

Internet identifier = 1.3.6.1 mib-2 managed object identifier = 1.3.6.1.2 ---
Note: at group not used in MIBHl and there is no group {9

epgl 8) transmission (10) somp {11}

o

Figure 14.21 Structure of management information: (a) ASN.1 types used; (b) suhtypes;

(c) portion of ASN.1 object naming tree relating to the Internet.

14.7 SNMP | 945

As we explained at the end of Section 13.2.1, the OBJECT IDENTIFIER
data type is used to identify a managed object within the context of an inter-
nationally defined object naming tree. The portion of this tree that relates to
the Internet MIB is shown in Figure 14.21(c). .

As we can see, each branch node in thé tree is identified by means of a
label and a number. A specific node is then identified by listing either the
label — together with its number — or simply the number of each branch node
starting at the root. In this way, all the managed objects within the total
Internet MIB carn be uniquely identified and all start with

isof1) org(3) dod(6) internet(1) mgmt(2) mib-2(1) ...
or, more usually,
1.36.1.2.1 ...

Note that the address translation {(at) group - arp and rarp - is not pre-
sent in MIB-II as this is now part of the ip group. Note also that there is no
group (9) and that path 1.3.6.1.4.1 is defined for vendor-specific MIBs. This is
necessary to ensure that there is no ambiguity when equipment from a
number of different vendors is being used.

Each item of equipment that is to be managed, and the various managed
objects associated with it, are defined using the object name tree shown in
Figure 14.21(c) as a template. The system(1) group contains a number of
variables that include the name (textual description) of the equipment, the
vendor’s identity, the hardware and software it contains, the domain name of
the equipment, and its location on the Internet. All the management infor-
mation that is subsequently obtained from this location relates to the given
named item of equipment in the object name tree.

Each managed object can be defined either as an individual entity or,
more usually, as a member of a larger group of related objects. Also related
groups of objects can be defined in the form of a module. For example, a
group may contain all the managed objects (variables) associated with a par-
ticular protocol such as IP while a module may contain the complete set of
managed object groups associated with a particular item of equipment.

Each managed object definition is in the form of a macro with a mini-
mum of four defined parameters associated with it. An example of an
object/variable definition relating to the eighteenth variable in the IP group
is as follows:

IpFraghails OBJECT TYPE

SYNTAX Gauge32 - -a count value up to 2%2-1

MAX-ACCESS read-only - - the manager station can only read this object
STATUS current - - the object is currently supported

DESCRIPTION "Number of IP datagrams described because don’t
fragment flag set”

=={ip18}

946

Chapter 14 Internet applications

As we can see, the object/variable name precedes the reserved word OBJECT
TYPE. The meaning of the four required parameters associated with each
chbject definition are:

B SYNTAX: this defines the data type of the object;

W MAX-ACCESS: defines whether the variable is read-only or read-write (as
viewed from the manager station);

B STATUS: indicates whether the variable is current or obsolete:

® DESCRIPTION: an ASCII string describing what the object is used for.
When the macro is invoked, the final ::= sign places the variable into the
object name tree of the device.

When a number of groups are collectively defined in a module, the
module is defined using a macro that starts with MODULE-IDENTITY. Its
parameters include the name and address of the implementer of the module
and its revision history. This is followed by an OBJECT-IDENTITY macro,
which identifies where the module is located in the object name tree, and a
list of OBJECT TYPE macros.

Each managed object in the MIB is uniquely identified and some exam-
ples relating to the ip group are shown in Figure 14.22. As we can see, an
object can be either a simple variable with a single value - for example
ipForwarding(1) — or a table containing a set of variables — for example
ipAddrTable(21). The object identifier of a simple variable in the MIB is the
name/identifier of the variable/object with .0 appended to it. For example,
the simple variable ipforwarding — which indicates whether the system is for-
warding IP datagrams (=1) or not (2) - is accessed using either thForwarding. 0
or, more specifically, as 1.3.6.1.2.1.4.1.0 since this is the form used by the

P w— {1.3.6.1.2.1.4)

ipForwarding {1}

ipDefaulTTL 2] — - - = — — « ipRoutingDiscards {20) ipAddrTable {21) - -
ipAdERtAddr (1) ipAdEntifindex (2] — ~ — — -

ipAdErtAddr ideniifier = 1 3.6.1.2.1.4.21.]

Figure 14.22 Example MIB ohjects in the ip group.

14.7.2

14.7 SNMP | 947

SNMP protocol to transfer the value over the Internet. In the case of a table
of values, normally the index used is the name/identifier of the table and this
is then followed by a string of get-next value commands untl the complete
table of values has been obtained. For example, assuming the table
ipAddrTable(21) — which contains the list of addresses (IP address, subnet
mask) and other information — this would be accessed using first ipAddrTable
-1.3.6.1.2.1.4.21.

Protocol

As we can deduce from the previous section, the management of an item of
equipment - host, router, and so on - involves the manager process reading
the current value of a defined set of variables (managed objects) that are
being maintained by the agent process in the equipment and also with trans-
terring a value to the agent for writing into a given variable. It also involves
receiving fault reports from the agent in the equipment should these occur.
To perform these functions, there is a set of request-response messages sup-
ported by the SNMP and also a separate command ~ known as a trap -
message for fault reporting. The list of message/PDU types used in SNMPv1
are defined in RFC 1157. They are summarized in F igure 14.23(a).

Each SNMP message is transferred over the Internet as a separate entity
using UDP. The UDP well-known port number of the SNMP in the agent for
the three request messages is port 161 and that in the manager station for
trap messages port 162. As we can deduce from this, the use of UDP as the
transport protocol means that there is no guarantee that a message is deliv-
ered. Hence when this is deemed to be necessary, a timer is often used and, if
a response is not received within a defined time interval, the request is resent.

The role of each of the five messages that are used is as follows:

B Get-request: this is used by the manager to get the current value(s) of one
or more named variables from an agent. The agent then returns the
value(s) using a Get-response message. The name/identity of each variable
is in 1ts numeric form and each value in the response message is encoded
using the basic encoding rules of ASN.1 As we saw in Section 13.2.2, each
returned value is in the form of a variable-length byte/octet string
comprising a type, length, and value field. In the case of the Gei-request
message, the type of each value field(s) is set to Null;

B Get-next-request. this is used by the manager to get the next variable that is
located in the MIB name tree immediately following each variable in the
list of names in the message. These are then returned in a Get-response
message. This type of message is used primarily to obtain the consecutive
values relating to a table variable; “

B Sef-request: this is used by the manager to write a given set of values into
the corresponding named variables;

948 | Chapter 14 Internet applications

(a)
Manager

‘ Manager station Managed equipment

Getrequest

Getresponse

Getnextrequest

Getresponse

Setrequest

Gehesponse

Trap

Port X/Y = ephemeral ports

(b)

e SNMP message =
l——Common header—m ‘

e
header.

P
header

0 Getrequest

1 = Getnextrequest
2 = Setrequest
3

4

PDU type

= Getresponse
= Tap

Figure 14.23 SNMPv1 messages/PDUs: (a) types and their sequence; (b) formats.

Summary | 949

B Trap: this is used by the agent in the equipment identified in the enterprise
field to notify the manager of the occurrence of a previously defined
event. The event type is specified by the value in the trap type field
together with the value in the specific code field. The time of occurrence
of the event is specified in the time-stamp field and, where appropriate, a
number of related variable values may be returned.

The community field in the commeon header contains a character string
that is a password in cleartext exchanged by the manager and agent. Typical
examples are public and secret. The request ID field in PDU types 0-3 is used
to enable the manager to relate a response to a specific request message. It is
selected by the manager and is returned in the related response message.
Finally, the error status is an integer value that is returned by an agent in a Get-
response message. For example, a value of 0 indicates no errors, a value of 1
indicates the response is too big to fit into a single SNMP message and a value
of 2 there is a nonexistent variable in the list. The latter is then identified by
the value in the error index field,

SNMPv2

SNMP is continuously evolving and there is now a second version defined in
RFC 1441, This is directed primarily at internets in which multiple manager
stations are involved. The main additions in SNMPv2 are:

B A new message type called Get-bulk-request. This has been added to enable
the retrieval process of the contents of large tables to be carried out
more efficiently.

B A new message type called Inforin-request. This has been added to enable a
manager process in one manager station to send information to a
manager process in another manager station.

® An additional MIB for handling the variables associated with manager-to-
manager communication.

8 The encryption of the password contained in the community field.

In this chapter we have studied the essential features of a selection of the
most widely used application protocols of the Internet. These were the appli-
cation protocols associated with electronic mail (SMTP and MIME), file
transfers (FTP and TFTP), and Internet telephony (SIP, SDP, and GLP). In
addition, we discussed two system-level application protocols that are essen-
tial for the correct functioning of the Internet (DNS and SNMP). The various
topics that we have studied relating to these protocols are summarized in
Figure 14.24.

950 Chapter 14 Internet applications

internet applications

Domain name systern [DNS)

Name structure and
administration

Resource records Name servers Query messages

Electronic mail (SMTP)

Message struciure

I — |

Message confent Transfer encoding Message fransfer

File transfer [FTP}

]

File content representation

I I I

FTP operation Message formals Anonymous FTP

]

Trivial FTP

Internet telephony

r

Session initiation profocol
(SIP)

Session description profocol Gateway location protocel

{SOP) IGLP)

Network management [SNAMP)

r

Structure of management

information -

SNMP protocol SNMPY2

Figure 14.24 Summary of topics relating to Internet applications.

Exercises ’ 951

Section 14.2

14.1

142

14.3

14.4

14.5

14.6

14.7

Explain why a domain name system {DNS) is
required with the Internet and describe its
main functional parts.

In relation to the DNS, explain why a hierar-
chical naming structure is used instead of a
flat structure.

Show the structure adopted for the DNS in the

form of a diagram. Include in your diagram:

(i) the root domain,

(ii) aselection of generic domains,

(iii} aselection of country domains,

(iv) some examples of fully qualified domain
names.

Each domain name in the DNS name space/
database has a resource record associated with
it. With the aid of diagrams, explain:

(i) the format of a resource record,

(ii) the format used for a domain name,
(iii) a selection of the resource record types,
(iv) the use of the time-to-live field.

Show in outline the format of a DNS query
and response message.

Hence give an example of a query relating
10 a type-A name-to-address resolution query.
State the use of the identification and flag
fields used in the query header.

Explain the meaning of the following terms
relating to the administratign of DNS name
servers:

(i) zones,

(i) primary name server,

(iti) secondary name server,

(iv) authoritative (resource) records,

With the aid of a diagram, show the sequence
of query/response messages that are
exchanged to carry out a local name-to-
address resolution. Include in your diagram a
client host, a local name server, and a server
host. Also include the resolver and the set of
higher-level protocols that are used in each.

148

14.9

14.10

With the aid of a diagram, show the sequence
of query/response messages that are
exchanged to carry out a recursive name-to-
address resotution. Include in your diagram a
root name server, a top-level name server,
and a lowerlevel name server.

With the aid of a diagram, show the sequence
of query/response messages that are
exchanged to carry out an iterative name-
to-address resolution. Include in your
diagram a top-level name server and a lower-
level namne server.

Explain the meaning of the term “pointer
query” and why pointer queries cannot be
resolved using the database structure shown
in Figure 14.1. Hence with the aid of a dia-
gram, show the extension to this structure
that is used with pointer queries. Give an
example showing how an IP address in a
query message is resolved into a host name.

Section 14.3

14.11

14.12

With the aid of a diagram, explain the func-
tion/meaning of the following terms relating
to email over the Internet. Include in your
diagram two communicating hosts and two
related mail servers. Also include the struc-
ture of the messages during their transfer
over the access networks and the Internet:

(i) user agent,

(ii) message transfer agent,

(iii) POP3,
(iv) message transfer system,
(v) SNMP.

List a selection of the fields that are present
in a message header and the envelope header
of an email message. Identify the use of each
field in relation to the diagram you used in
Exercise 14.11.

Show how user-defined fields are added to
the header and give an example of their use.

952

14.13

14.14

14.15

14.16

14.17

14.18

Chapter 14 Internet applications

Explain the transfer syntax that is used for both
the contents of a text-only email message and
all the header fields. Include in your descrip-
tion how each field is delimited and how the
end of the message header is indicated.

List a selection of the additional header fields
that are used with MIME. Explain the use of
each field and how the recipient UA deter-
mines the type of contents that are present in
the message body and their transfer syntax.

By means of an example, show how a short mes-
sage can be sent in both richtext and plaintext.
Include the MIME headers that are required
and how each form of the message is separated.
Is the order of the two message types important?

Explain the transfer encoding scheme that is
used to ransfer messages comprising strings of
8-bit bytes. Include in your explanation the use
of Base64 and how this relates to NVT ASCIL

A binary file containing a string of 8-bit audio
samples is to be sent in an external file
attached to an email message. Assuming the
first three bytes in the file are:

10010101 11011100 00111011

use the Base64 table in Table 14.2 and the list
of ASCII codewords in Figure 2.6(a) to show
how these three bytes are converted and sent
in NVT ASCII. Also how the recipient UA
determines the original three bytes from the
received NVT ASCII string.

A number of companies have been invited to
prepare and submit a tender for a contract
using email. To provide a high level of privacy
and to authenticate each tender and ensure
nonrepudiation, each company has been
asked to encrypt their tender using PGP. By
means of a block schematic diagram, assum-
ing no compression is to be used, show the
various steps that are followed to carry out:

(i) the authentication and nonrepudiation
steps and

(i) the encryption and decryption of the
tender contents.

14.19

14.20

With the aid of a diagram, explain the func-
tion of the various components that make up
the application process in a mail server to
transfer an email message over the Internet.
Include in your diagram the protocol stack
that is used in two peer mail servers and also
how the UA in each server interacts with the
UA in each of the client hosts.

Using the list of SNMP command and
response messages given in Figure 14.11,
show a typical message interchange between
an MTA client and an MTA server to transfer
an email message over the Internet.

Section 14.4

14.21

14.22

14.23

With the aid of a diagram, describe the role of
the control and data transfer parts of the AP in
both a client and & server to transfer the con-
tents of a file over a CTP/IP network using the
file transfer protocol (FTP). Include in your
description how the FTP in the client and the
server are involved in the establishment and
closing down of a TCP connection,

With the aid of a ume sequence diagram, use
the list of FTP command and reply messages
given in Table 14.3 to show a typical
exchange of messages to carry out the trans-
fer of a named file from the file system on a
server to the file system on a client. Explain
how the port numbers in both the client and
server sides are determined.

Outline the steps that are taken by a user to
log in to a remote server using anonymous
FTP. Explain how the server side performs a
check on the user before granting the user
access.

Section 14.5

14.24

14.25

Explain how trivial FTP (TFIP) is different
from FTP. Give an example of the use of each
protocol.

List the five message types associated with
TFTP. Hence show an example message
exchange that illustrates the main features of

the protocol. Include in your example how
the sending side detects a lost/corrupted
data message and a lost/corrupted acknowl-
edgment message. Also include the use of a
LAST ACK timer.

Section 14.6

14.26

14.27

14.28

14.29

14.30

14.31

14.32

Outline the different types of call/session
associated with Internet telephony. Hence
identify the main requirements of the set of
signaling protocols that are associated with it.
Namely, the session initiation protocol (SIP),
the session description protocol (SDP), and
the gateway location protocol (GLP}.

By means of a diagram, identify the protocol
stack that is present in each host device that
wishes to take part in an Internet telephony
call/session. Describe briefly the role of
each protocol.

In relation to the SIP, explain briefly the usage
of the following (SIP) message types: INVITE,
ACK, REGISTER, OPTIONS, CANCEL,
and BYE.

List a selection of the header fields associated
with a SIP INVITE message and state their
use. Give an example of a SIP address.

Qutline how a user informs the system that
he or she can be contacted at a number of
different locations using a SIP REGISTER
message.

With the aid of a diagram, explain how a
call/session is set up using SIP between a user
and a called user who is currently located at
their primary SIP address. Include in your dia-
gram the proxy server at each of the sites
involved and the protocol stack that is used in
both hosts and proxy servers, Explain clearly
the role that is carried out by the proxy servers.

With the aid of a diagram, explain how the
sequence followed in Exercise 14.31 is differ-
ent when the called user is currently located
at a secondary address. Explain clearly the

14.33

14.34

14.35

14.36

14.37

14.38

953

Exercises

role carried out by the redirect server in set-
ting up the call/session.

Assuming the session description protocol is
being used, explain the use of the following
fields that may be present in the body part of
a SIP INVITE message:

(i} media streams,

{ii) stream address,

{(iii) start and stop times.

With the aid of a diagram, explain how inter-
working between a host that is attached to an
IP network and a terminal equipment - a
telephone for example - that is attached (o a
PSTN/ISDN is carried out. Include in your
diagram a signaling/media gateway and a
location server. Hence explain the role of the
gateway location protocol (GLP) in relation
to the interworking procedure.

‘Section 14.7

Describe the role of the simple network manr-
agement protocol (SNMP) in relation to the
Internet. Include in your description the role of
fault, performance, and layer management and
the meaning of the term “managed object”.

By means of a diagram, show the protocol
stack associated with a host and a router that
enables them to be managed from a remote
management station attached to the Internet.
Include in your diagram a management
agent and a manager process and explain
how the two interact.

Explain the role of the management informa-
tion base (MIB). Also explain why ASN.1 is
used to define the structure of all the man-
agement information that it contains.

All managed objects within the Internet are
identified within the context of an interna-
tionally defined object naming tree. By
means of a diagram, show the structure of
this tree down to a level that includes the vari-
ous managed objects in a particular item of
equipment. Give an example of the identifier
of one of the managed objects in the tree.

954

14.39

14,40

14.41

14.42

Chapter 14 Internet applications

Using the object naming tree you derived as
part of Exercise 14.37 as a template, explain
how a specific managed object within a particu-
lar itemn of equipment is (uniquely) identified.

By means of an example, show how a managed
object/variable relating to the IP protocol is
defined. Include in your definition an OBJECT
TYPE, SYNTAX, STATUS, and DESCRIPTION
parameter. State the role of each parameter
and how the variable is placed in the object
name tree of the device in the MIB.

By means of examples, show how each man-
aged object/variable in the MIB is identified
uniquely. Use for example purposes a vari-

-able with a single value and also one

comprising a table of values.

With the aid of a diagram, list the five mes-
sage/PDU types associated with SNMPvl.

14.43

14.44

Include in vour diagram the protacol stack and
the well-known port numbers that are used.

Explain briefly the role of each of the five
message types and how a lost message can
be detected.

With the aid of the SNMP message/PDU for-
mats defined in Figure i4.23(b), explain how
a manager process obtains the current value of
a named variable — managed object — from the
agent process in a specified item of (managed)
equipment. Include in your explanation the
use of the Community, RequestlD, Error
Status, and Error Index fields in the SNMP
messages,/PDUs.

Qutline the extensions to SNMPvl that
are present in SNMPv2. Hence explain
how the security features of SNMPvl have
been enhanced.

